

GP5100

GPS 1 DD. SPEED TECHNICAL SPECIFICATION

Das gps. 100SPEED ist eine weitere große Bereicherung zur existierenden gps.100 Produktfamilie, die sich in zahlreichen anspruchsvollen Entwicklungsprozessen in der Automobilindustrie bewährt hat.

Eingebettet in ein ultrakompaktes Gehäuse, wurde die bewährte GPS-Performance der gps.100-Serie mit einem 3-Achsen-Beschleunigungssensor und einem 3-Achsen-Gyroskop gekoppelt. Diese können mit dem eigens entwickeltem AI Sensor-Fusions-Algorithmus für GPS-Daten mit einem Luftdrucksensor und einem digitalen Kompass gekoppelt werden.

Wie bei allen Produkten der gps.100-Reihe wird auch bei der SPEED-Variante das Rauschen im Geschwindigkeitssignal extrem gering gehalten. Zusätzlich erfolgt eine permanente Plausibilitätsprüfung des Signals durch einen zweiten hochwertigen LowSpeed GPS-Empfänger. Dies führt zu weniger Fehlinformationen und einem stabileren Signal.

Alle Sensorwerte werden mit einer Messfrequenz von bis zu 400Hz ausgegeben.

Der gps.100SPEED Empfänger unterstützt alle gängigen GNSS-Systeme (GPS, Glonass, Galileo, BeiDou). Selbstverständlich werden auch SBAS/EGNOS-Informationen empfangen und zur Korrektur berücksichtigt. Eine ausgeklügelte Stillstandserkennung "PSD" (Precise Stop Detection) senkt ohne zusätzliche Filter die Auslöseschwelle auf nahezu 0,00 km/h und damit auch die Latenzen beim Anfahren.

Mit der optionalen IMU können sowohl der Roll-/Neigungs- als auch Yaw (dynamisch/statisch) direkt über die internen Sensoren gemessen werden. Zusätzlich kann auch der side-slip Winkel und andere Beschleunigungen direkt gemessen und ausgegeben werden, sowohl mit als auch ohne Schwerkraftkorrektur.

Zur Verfügung stehen zwei analoge und zwei digitale Eingänge. Die beiden analogen Ausgänge stellen die Verbindung zu vorhandener Hardware her. Darüber hinaus können Daten über OBD-11 importiert werden (inkl. WWH-Unterstützung) und/oder CAN (Classic 2.0B / FD). Das Drehzahlsignal wird als analoge Spannung oder als digitale Impulsfolge ausgegeben. Außerdem können alle Daten auf dem CAN-Bus ausgegeben, oder im System gespeichert werden (Logging-Funktion).

Alle Daten werden mit einem Zeitstempel versehen, so dass interne Latenzen und Laufzeiten auf dem CAN-Bus kompensiert werden können. Die Gerätesoftware ist auf eine Verarbeitung mit möglichst geringer Latenz optimiert.

können vollautomatische durchführen Interne Apps Messungen und Tests wie z. B. Bremswegmessung, Rundenzeit und Fahrleistung. Die Ergebnisse werden über den CAN-Bus ausgegeben. Die gps.100PRO-internen Apps verfügen über eine Testerkennung intelligente und können über vorher definierte SO Triggerschwellen, automatisch einen gefahrenen Test aufzeichnen.

Das Gerät kann mit einer einfach zu bedienenden Konfigurationssoftware parametisiert werden.

Mit dem gps.100SPEED sind Messungen nach ECE R13H möglich.

Anwendungen:

- Fahrleistungsmessung
- Bremstests
- Homologation
- Fahrdynamik & Handling
- Verbrauch & Abgasmessung
- Real Driving Emission
- Entwicklung Fahrassistenzsysteme
- Hochleistungs-GPS-Messungen

Optional:

- Anwendungsspezifische Konfiguration
- RS232 Daten output
- Hochauflösende IMU
- Dual GPS

GPS100.SPEED

GENERAL INPUT IMU - Standard

GPS system

bis zu 400Hz

50 KanalGPS L1, integrierte IMU als Unterstützung

Slave GPS

bis zu 20Hz GPS LIC Glonass/Galileo/BeiDou

Optional: RTK / GPS L2C

CPU/MCU

High-Performance ARM Cortex M7 216MHz

Display

4 Status LEDs

Housing

Eloxiertes Aluminium Gehäuse mit mounting plate

Dimensionen

zirka 135x80x27mm Gewicht: 600g

Versorgung

9V bis 70V, DC max. 500mA (Peak 1A)@ 12V

Temperatur

Betrieb -40 to 85° Lagrerung -40 to 85°

Die IMU ist für den gesamten Temperaturbereich von -40° bis +85°C kalibriert. CAN

1 Kanal CAN 2.0 A/B bis zu IMBaud, einstellbar Unterstützt CAN FD bis zu 8MBaud

Eingabe von CAN-Signalen über DBC in den Datenpool

Abschlusswiderstand kann per Software gesteuert werden

OBD-II*

ISO15765 konfigurierbarer CAN Verschiedene Signale können vom Fahrzeug abgerufen werden

*Fahrzeugabhängig, Option

Digital-In

2 Digitale trigger inputs >5V High level <1V Low level Latenz <1uS

Analog-In

3 Analoge inputs 0-60V DC, 24Bit Auflösung 400Hz Abtastrate -3dB@ 55 Hz

OUTPUT

Digital-Out

1 Digitaler TTL output 0V / 5V level, max. 50mA 8Hz Frequenz pro km/h Abtastrate: max. 400Hz (Nur Geschwindigkeit)

Analog-Out

1 Analoger output 0 - 5V, 10mV pro km/h Abtastrate: max. 400Hz (Nur Geschwindigkeit) **GYRO**

Bereich +/- 2000 °/sec

Nonlinearity < 0.1% FS

3dB bandwidth

250 Hz

Stabilität < 5°/hr

ACCELEROMETER

Bereich

+/- 16g

Nonlinearität < 0.5% FS

3dB bandwidth

250Hz

Stabilität < 0.04mg

MAGNETOMETER

Auflösung 0.25mG

Full range

5G

Linearity

<0.1%

3dB Bandbreite

200 Hz

ANDERE

Garantie

1 Jahr beschränkte Garantie

Diese System ist ITAR frei und unterliegt keinerlei Exportauflagen

GPS 100.SPEED

GPS Leistung / Genauigkeit

Geschwindigkeit Genauigkeit

 $+/- 0.03 \text{ m/s} (1\sigma \text{ RMS})$

Auflösung: bis zu 0.01 km/h Latenz: <2ms (ohne Zeitstempel) Latenz: 0ms (mit Zeitstempel) max.

500 km/h

Abtastrate: max. 400Hz

Positionsgenauigkeit

Horizontal (SBAS): $1.5 \text{ m} (1\sigma \text{ STD}) \text{ RMS}$

Vertikal (SBAS / Barometer):

2.5 m (1σ STD) RMS

Abtastrate: max. 400Hz

Heading

Accuracy:

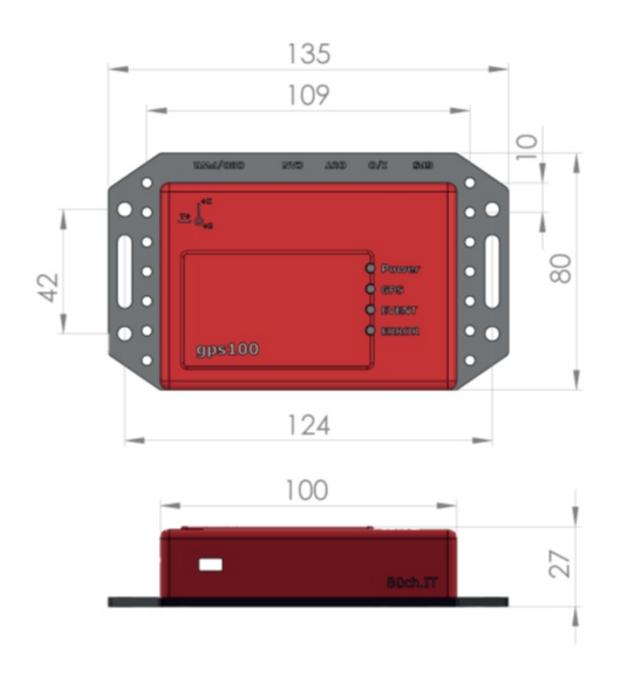
0.1°

Auflösung:

0.05

Repeatability:

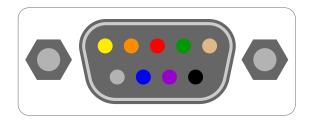
<0.1 °


Roll / Pitch

Genauigkeit:

0.5° RMS / Static

0.1° RMS / Dynamic



6

OBD-II / Power # D-Sub 9 Pin # Female

1 • CAN-L

2 • -

3 • CAN-H

4 • GND

5 • GND

6 VCC

7 • -

8 • | -

9 • |

CAN # Lemo EGG.0B.303 # 3 Pin Jack

1 • CAN-H 2 • CAN-L 3 • CAN-GND

OUT # Lemo EGG.0B.304 # 4 Pin Jack

1 • TTL-Signal2 • TTL-GND3 • Analog Signal4 • Analog GND

IN # Lemo EGG.0B.306 # 6 Pin Jack

Analog In 1
Analog In 2
Analog GND
Digital In 1
Digital In 2
Digital GND

Büch.IT

Steinenbrück 18 57642 Alpenrod Germany

https://www.buech-it.de info@buech-it.de

+49-2662-500477-0

Distributed by:

DUETTO-Engineering

Stefan Roman Müller Frans-Hals-Str. 13 81479 München

Ph.: +49 89 41602080

Email: <u>info@duetto-engineering.de</u> www.duetto-engineering.com